28 research outputs found

    Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus

    Get PDF
    Bioluminescence imaging is used for longitudinal evaluation of bacteria in live animals. Clear relations exist between bacterial numbers and their bioluminescence. However, bioluminescence images of Staphylococcus aureus Xen29, S. aureus Xen36 and Escherichia coli Xen14 grown on tryptone soy agar in Etests demonstrated increased bioluminescence at sub-MICs of different antibiotics. This study aimed to further evaluate the influence of antibiotic pressure on bioluminescence in S. aureus Xen29. Bioluminescence of S. aureus Xen29, grown planktonically in tryptone soy broth, was quantified in the absence and presence of different concentrations of vancomycin, ciprofloxacin, erythromycin or chloramphenicol and was related to expression of the luxA gene under antibiotic pressure measured using real-time PCR. In the absence of antibiotics, staphylococcal bioluminescence increased over time until a maximum after ca. 6 h of growth, and subsequently decreased to the detection threshold after 24 h of growth owing to reduced bacterial metabolic activity. Up to MICs of the antibiotics, bioluminescence increased according to a similar pattern up to 6 h of growth, but after 24 h bioluminescence was higher than in the absence of antibiotics. Contrary to expectations, bioluminescence per organism (CFU) after different growth periods in the absence and at MICs of different antibiotics decreased with increasing expression of luxA. Summarising, antibiotic pressure impacts the relation between CFU and bioluminescence. Under antibiotic pressure, bioluminescence is not controlled by luxA expression but by co-factors impacting the bacterial metabolic activity. This conclusion is of utmost importance when evaluating antibiotic efficacy in live animals using bioluminescent bacterial strains. (C) 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved

    Host mobility key management in dynamic secure group communication

    Get PDF
    The key management has a fundamental role in securing group communications taking place over vast and unprotected networks. It is concerned with the distribution and update of the keying materials whenever any changes occur in the group membership. Wireless mobile environments enable members to move freely within the networks, which causes more difficulty to design efficient and scalable key management protocols. This is partly because both member location dynamic and group membership dynamic must be managed concurrently, which may lead to significant rekeying overhead. This paper presents a hierarchical group key management scheme taking the mobility of members into consideration intended for wireless mobile environments. The proposed scheme supports the mobility of members across wireless mobile environments while remaining in the group session with minimum rekeying transmission overhead. Furthermore, the proposed scheme alleviates 1-affect-n phenomenon, single point of failure, and signaling load caused by moving members at the core network. Simulation results shows that the scheme surpasses other existing efforts in terms of communication overhead and affected members. The security requirements studies also show the backward and forward secrecy is preserved in the proposed scheme even though the members move between areas

    Fault-tolerant and Scalable Key Management Protocol for IoT-based Collaborative Groups

    Get PDF
    International audienceSecuring collaborative applications relies heavily on the underlying group key management protocols. Designing these protocols ischallenging, especially in the context of the Internet of Things (IoT). Indeed, the presence of heterogeneous and dynamic members within the collaborative groups usually involves resource constrained entities, which require energy-aware protocols to manage frequent arrivals and departures of members. Moreover, both fault tolerance and scalability are sought for sensitive and large collaborative groups. To address these challenges, we propose to enhance our previously proposed protocol (i.e. DBGK) with polynomial computations. In fact, our contribution in this paper, allows additional controllers to be included with no impact on storage cost regarding constrained members. To assess our protocol called DsBGK, we conducted extensive simulations. Results confirmed that DsBGK achieves a better scalability and fault tolerance compared to DBGK. In addition, energy consumption induced by group key rekeying has been reduced

    Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes

    Get PDF
    <p>Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene wide association studies) for obesity and T2D in human adipocytes. The mRNA expression of lipid and glucose metabolism genes was changed upon the treatment of human primary adipocytes with SPIONs. mRNA of GULP1, SLC30A8, NEGR1, SEC16B, MTCH2, MAF, MC4R, and TMEM195 were severely induced, whereas INSIG2, NAMPT, MTMR9, PFKP, KCTD15, LPL and GNPDA2 were down-regulated upon SPIONs stimulation. Since SEC16B gene assist the phagocytosis of apoptotic cells and this gene were highly expressed upon SPIONs treatment in adipocytes, it is logic to assume that SPIONs may play a crucial role in this direction, which requires more consideration in the future.</p>

    REAL-TIME QUANTIFICATION OF MATRIX METALLOPROTEINASE AND INTEGRIN alpha v beta 3 EXPRESSION DURING BIOMATERIAL-ASSOCIATED INFECTION IN A MURINE MODEL

    No full text
    Biomaterial implants and devices increase the risk of microbial infections due to the biofilm mode of growth of infecting bacteria on implant materials, in which bacteria are protected against antibiotic treatment and the local immune system. Matrix-metalloproteinases (MMPs) and cell surface integrin receptors facilitate transmigration of inflammatory cells toward infected or inflamed tissue. This study investigates the relationship between MMP- and integrin-expression and the clearance of infecting Staphylococcus aureus around implanted biomaterials in a murine model. MMP- and integrin alpha v beta 3 expression were monitored in mice, with and without subcutaneously implanted biomaterial samples, in the absence and presence of bioluminescent S. aureus Xen36. Staphylococcal persistence was imaged longitudinally over time using bioluminescence imaging. The activatable MMPSense (R) 680 and integrin-targeted IntegriSense (R) 750 probes were injected on different days after implantation and their signal intensity and localisation monitored using fluorescence imaging. After sacrifice 7 or 16 days post-implantation, staphylococci from biomaterial samples and surrounding tissues were cultured on agar-plates and presence of host inflammatory cells was histologically evaluated. MMP- and integrin-expression were equally enhanced in presence of staphylococci or biomaterials up to 7 days post-implantation, but their localisation along the biomaterial samples differed. Bacterial clearance from tissue was higher in the absence of biomaterials. It is of clinical relevance that MMP- and integrin-expression were enhanced in presence of both staphylococci and biomaterials, although the immune system in the presence of biomaterials remained hampered in eradicating bacteria during the first 7 days post-implantation
    corecore